
Squash Keyword Framework Plugin for
IntelliJ-idea Documentation

Release 1.0.0-RELEASE

Minh Qwan Tran, Éric Dégenètais

Apr 01, 2020

Contents

1 Squash TF IntelliJ IDEA plugin 1
1.1 Plugin Installation . 1
1.2 User Manual . 2

2 Squash TF IntelliJ IDEA plugin 3
2.1 Guide for Plugin Functional Development . 3

3 Summary 13

i

ii

CHAPTER 1

Squash TF IntelliJ IDEA plugin

1.1 Plugin Installation

1.1.1 Requirements

• IntelliJ Community IDE (version 2018.3.2 or later)

• JAVA JDK 1.8+

Note: The plugin can work without installing Maven on your machine thanks to the embedded version. However it
is preferable to indicate the path of your own Maven version (3.5.0 recommended).

1.1.2 Install plugin from disk

Download Squash TF plugin for Intellij IDEA here

To install follow the default “install plugin from disk” instructions from IntelliJ :

1. In the Settings/Preferences dialog (Ctrl+Alt+S), select Plugins.

2. In the Plugins dialog, click the and then click Install Plugin from Disk.

3. Select the plugin archive file and click OK.

4. Click OK to apply the changes and restart the IDE if prompted.

1

https://squash-tf.readthedocs.io/en/latest/download.html#squash-intellij-idea-plugin
https://www.jetbrains.com/help/idea/managing-plugins.html#install_plugin_from_disk

Squash Keyword Framework Plugin for IntelliJ-idea Documentation, Release 1.0.0-RELEASE

1.2 User Manual

IntelliJ-Squash-plugin-user-manual-v1.0.8.docx

2 Chapter 1. Squash TF IntelliJ IDEA plugin

CHAPTER 2

Squash TF IntelliJ IDEA plugin

2.1 Guide for Plugin Functional Development

2.1.1 Introduction

1. Purpose

This document is a Technical Design Document for use by IntelliJ-Squash-plugin project. It provides not only a
global view on the infra-structure between the project modules, but also the technical/functional analysis onto each
feature of the plugin project.

2. Intended audience

• Supervisors, to analyse the design and implementation of the plugin project

• Squash TF team members

• Future developers, testers who will work with the plugin

3. Scope

This document describes the structure design and the technical analysis of IntelliJ-Squash-plugin project.

3

Squash Keyword Framework Plugin for IntelliJ-idea Documentation, Release 1.0.0-RELEASE

4. Acronyms

Acronym Definition
BNF Backus-Naur Form
DSL Domain Specific Language
IDE Integrated Development Environment
ISP IntelliJ-Squash-plugin
SKF Squash Keyword Framework

2.1.2 System overview

The ISP project is a member of the Squash TF galaxia project group which is open-source but belongs to @Henix
company.

While the whole group purpose is to provide to grand public a toolbox for functional testing automation and is dedi-
cated to the industrialization of automated test execution, the goal of the ISP itself is to allow users (i.e. developers,
testers. . .) to compose, execute or even test SKF DSL via IntelliJ Community IDE.

This plugin project consists of 5 modules:

• IntelliJ-Idea Platform: creates all dependencies in the IntelliJ-idea binaries to be used as provided dependen-
cies for the build and packaging of the Intellij reactor.

• IntelliJ-Idea Platform Bundle: allows the packaging of the IntelliJ-Idea platform dependencies for CI builds
and development environment.

• Squash Keyword Framework Parser for IntelliJ-Idea: parse the SKF DSL elements into IntelliJ PsiElements
for plugin feature development.

• Intellij-jflex-adapter: creates an adapter for the version 1.7.0-2 of flex created by Jetbrains for IntelliJ Com-
munity IDE, in order to use it with the jflex plugin.

• Squash Keyword Framework Plugin for IntelliJ-Idea: provides all kinds of features for SKF DSL in IntelliJ
Community IDE such as: autocompletion, syntax annotation/coloration. . .

2.1.3 Technical requirement

As ISP is a Maven project dedicated to create an IntelliJ IDE plugin, it is required in local:

• JAVA JDK 1.8+

• MAVEN (3.5.0 recommended)

Warning: The Maven path MUST contain no spaces to avoid installation problems.

• IntelliJ Community IDE (version from 2018.3.2 to 2019.1.x)

• Git for cloning the IntelliJ project code sources (version 2018.3.2 Build #IC-183.4886.37)

4 Chapter 2. Squash TF IntelliJ IDEA plugin

https://www.jetbrains.com/idea/download/other.html
https://github.com/JetBrains/intellij-community/releases/tag/idea%2F183.4886.37/

Squash Keyword Framework Plugin for IntelliJ-idea Documentation, Release 1.0.0-RELEASE

PS: The document for setting an environment for the ISP development can be obtain here

2.1.4 Plugin component descriptions

1. IntelliJ-Idea Platform

To be updated. . .

2. IntelliJ-Idea Platform Bundle

To be updated. . .

3. Squash Keyword Framework Parser for IntelliJ-Idea

This is the core of the SKF DSL parsing process in IntelliJ Community IDE. In fact, it helps the IDE not only to
identify whether or not a file belongs to a DSL (ex: .ta, .macro) but as well to check if that file content complies with
all those DSL syntax conventions.

This module consists of 2 principal packages:

• src/main/bnf: contains all BNF files of the ISP.

As known by its name, each BNF file is a formal notation for encoding grammars intended for human
consumption. More detailed information about BNF can be found here.

There are two BNF files of SKF DSLs used in the ISP.

– Squash Test BNF File: for files with .ta extension

– Squash Macro BNF File: for files with .macro extension

The elements in green color is of type simple. Their value is defined by a Lexer file that will be
discussed in the next chapters of this document.

2.1. Guide for Plugin Functional Development 5

http://matt.might.net/articles/grammars-bnf-ebnf/

Squash Keyword Framework Plugin for IntelliJ-idea Documentation, Release 1.0.0-RELEASE

The elements in blue color is of type complex. Their value is composed of more than one simple or
other complex elements.

Each element here will then be generated into a specific JAVA class called IntelliJ PsiElement class
which is later used for the ISP features development.

Warning: As a file violates one or more BNF specifications, the first-found-troublemaker ele-
ment will be annotated as ERROR.

This ERROR will disable any plugin functionality for the rest of the file.

Moreover, it also blocks all possible development interventions as no more IntelliJ PsiElement
could be identified.

Hint: It is therefore strongly advised to have a discussion between the plugin developers and product
owner before inserting or removing a syntax convention at this PARSING level.

• src/main/java:

This package contains JAVA classes that helps IntelliJ Community IDE to identify a file’s language
by its extension.

It also creates Element-type and Token-type ofr a DSL, as well as implement methods in order to
obtain the value of each PsiElement.

4. Intellij-jflex-adapter

To be updated. . .

5. Squash Keyword Framework Plugin for IntelliJ-Idea

This module whose type is IntelliJ Plugin is the base package of the ISP.

Its purpose is to develop all SKF DSL features for IntelliJ Community IDE.

• sources/META-INF: contains the plugin.xml file.

This XML file declares the service, the role, as well as the scale (or life-cycle) of JAVA classes created
in the following src/main/java package.

6 Chapter 2. Squash TF IntelliJ IDEA plugin

Squash Keyword Framework Plugin for IntelliJ-idea Documentation, Release 1.0.0-RELEASE

The most important part of this file is the service declaration and implementation that indicates which
JAVA class takes care of which plugin feature of the ISP.

Note: Syntax convention for this plugin.xml is modified by IntelliJ from version 2019.2.x. More
information about this can be found here.

• src/main/java: consists of all JAVA classes used for the plugin feature development.

There are 9 main sections in this package:

5.1. Project model

This is to defines a model for the SKF project organization in IntelliJ Community IDE as well tools
to use it.

To be specific, it checks whenever the current project is a valid SKF DSL project. On the other hand,
it helps IntelliJ Community IDE to get the virtual files of all TA File/Macro files in the working
project for further development investigations/interactions.

5.2. Framework connector

This module’s goal is to connect the ISP with the SKF DSL framework (squash-ta-new-engine
project) to obtain all the engine components such as built-in macros, converters or command. . .

5.3. Notification

This service controls the notification mechanism in the ISP (the notif. message content, warning
level, showing time. . .).

2.1. Guide for Plugin Functional Development 7

http://www.jetbrains.org/intellij/sdk/docs/tutorials/custom_language_support/language_and_filetype.html#b-register-file-type-20192-or-later

Squash Keyword Framework Plugin for IntelliJ-idea Documentation, Release 1.0.0-RELEASE

5.4. Language

All JAVA classes for name, extension, icons, lexer (see 4.5.5 section) and parser of each SKF
DSL are defined in this section.

5.5. DSL Lexer

Until the project re-structuring is completed, these lexers temporarily locate in the file/lexer/ and
macro/lexer/ folders.

IntelliJ Community IDE uses jflex technology to create the lexer for each custom language. In fact,
a lexer defines the valid value(s) for every element created by the parser of that DSL. If the current
parsed element of a file conforms to the corresponding lexer convention, it will be assigned to an
appropriate PsiElement in the ISP.

There are 2 principal steps in every lexer file (.flex):

– Declaration of variables and phases

– Utilisation of variables and phases to identify the parsed element

8 Chapter 2. Squash TF IntelliJ IDEA plugin

Squash Keyword Framework Plugin for IntelliJ-idea Documentation, Release 1.0.0-RELEASE

More detailed information about jflex can be found at this link.

Warning: As in case of parsing process, if a file violates one or more FLEX specifications, the
first-found-troublemaker element will be annotated as ERROR.

This ERROR will disable any plugin functionality for the rest of the file.

Moreover, it also blocks all possible development interventions as no more IntelliJ PsiElement
could be identified.

Hint: It is therefore strongly advised to have a discussion between the plugin developers and product
owner before inserting or removing a syntax convention at this LEXING level.

5.6. Validation

This is one of the 3 main features of the ISP added into IntelliJ Community IDE: defining general
validation logic for SKF DSLs.

As you may already know, the first step of validating a file content is provided through each DSL
parser and lexer. If passed, that file is then considered of that DSL and then the parsing process in
ISP will store each captured item in an appropriate PsiElement object.

This is the second validation step which is to check if this DSL-conformed-file is in the correct
directory, if a SKF DSL basic instruction line is 1 of 6 valid templates, if a macro line is well defined
or if a metadata input syntax is correct. . .

Note: The advantage of this validation step is that developer can choose when, where and how to
call an error, warn or info message for each case of violation.

In addition to the syntax validation, this section also provides the macro signature/line tracing
ability. If a macro signature or a macro line of a file is found in the framework component list
or in the project shortcuts folder (or its subfolders), a marker will be created at the beginning

2.1. Guide for Plugin Functional Development 9

https://jflex.de/manual.html

Squash Keyword Framework Plugin for IntelliJ-idea Documentation, Release 1.0.0-RELEASE

of that line and eventually provides the navigation to the defining macro file if the latest is in the
shortcuts folder (or its subfolders).

5.7. Highlighting

This is second features of the ISP added into IntelliJ Community IDE: providing generic highlight
tools for SKF DSLs.

When a file is found in such a DSL by passing that language parsing process, each DSL item of this
file will be associated with a corresponding PsiElement element. Those elements are then grouped
by type.

This functionality is to assign each element group a specific color for the user visualization.

Besides, it creates also a color setting page for each SKF DSL in IntelliJ Community IDE.

5.8. Autocompletion

This is third features of the ISP added into IntelliJ Community IDE: implementing general comple-
tion logic for SKF DSLs.

This functionality proposes to user the most appropriate SKF DSL elements based on the current file
content and the user cursor position. Each SKF DSL (Squash Test and Squash Macro) has a specific
autocompletion mechanism.

10 Chapter 2. Squash TF IntelliJ IDEA plugin

Squash Keyword Framework Plugin for IntelliJ-idea Documentation, Release 1.0.0-RELEASE

Note: The common point of these two mechanisms is that the autocompletion result is at
least a SKF DSL element and at most to complete the asking-for-completion line.

5.8.1. Squash Test autocompletion

There are three different kinds of completions in a Squash Test file:

– Phase/section completion

When user requests a completion by typing Ctrl+Space, the plugin will firstly
check the existence of each phase/section (i.e. METADATA, SETUP, TEST,
TEARDOWN) in the current file. If this file is not an Ecosystem file (setup.ta
or teardown.ta), the appropriate missing phase(s) will be proposed.

Warning: The TEST phase must exist in file content or it is the only result to
be proposed for completion.

– Line completion

When a phase is already defined and the user cursor is on an empty line, a line
completion will be invoked.

In fact, user can choose either 1 of 6 available SKF DSL instruction templates or
simply their HEAD KEY to insert an basic instruction.

On the other hand, he/she can get the # symbol to start a macro line.

– Element completion

When an autocompletion is asked on a non-empty line, the most appropriate SKF
DSL elements will be offered if that line is of type basic instruction.

In case of macro line, the element completion functionality is not yet available
for this ISP version.

5.8.2. Squash Macro autocompletion

Similarly, there are also three different kinds of completions in a Squash Macro file:

– Macro signature completion

When user requests a completion for an empty .macro , a model of Squash
macro signature will be offered. User can then modify the Fixed parts or/and their
Parameter to define his/her own macro signature.

Before auto-completion:

After auto-completion:

2.1. Guide for Plugin Functional Development 11

Squash Keyword Framework Plugin for IntelliJ-idea Documentation, Release 1.0.0-RELEASE

– Line completion

Under reconstruction

– Element completion

Under reconstruction

5.9. Tools

This is a collection of utils (methods) used for developing the 3 features of the ISP.

12 Chapter 2. Squash TF IntelliJ IDEA plugin

CHAPTER 3

Summary

This IntelliJ IDEA plugin helps us to write S quash K eyword F ramework, aka SKF, scripts. It brings us :

• autocompletion (instructions / macros)

• syntax highlighting (instructions / macros)

• syntax validation (instructions / macros)

Known limitations

Currently the Squash TF IntelliJ plugin has some limitations:

• The last declared PHASE/SECTION line in a Test script MUST not be empty to be recognised. If you don’t
have anything to insert in it yet, just simply complete that line by pressing “Enter”.

• All plugin’s features such as syntax validation, color highlighting, autocompletion. . . will no longer work
properly after the first parsing error (if any) encountered in the file.

• Sometime the IntelliJ’s color highlighting doesn’t update after a syntax error correction, in that case all you need
to do is move back to the beginning of the current line and press “Enter” to refresh the color highlighting.

• When you open the code completion popup for a macro and type some characters, the plugin gets all the macro
containing those characters and keeps them to proposal. However, the filtration result contains all macro in
which the searched characters existed not only in one block but also being separated by other characters.

13

	Squash TF IntelliJ IDEA plugin
	Plugin Installation
	User Manual

	Squash TF IntelliJ IDEA plugin
	Guide for Plugin Functional Development

	Summary

